Some combinatorics of rhomboid-shaped fully packed loop configurations
نویسنده
چکیده
The study of rhomboid-shaped fully packed loop configurations (RFPLs) is inspired by the work of Fischer and Nadeau on triangular fully packed loop configurations (TFPLs). By using the same techniques as they did some nice combinatorics for RFPLs arise. To each RFPL and to each oriented RFPL a quadruple of binary words (α, β; γ, δ) – its so-called boundary – is assigned. There are necessary conditions for the boundary of an RFPL respectively an oriented RFPL. For instance, it has to fulfill the inequality d(γ) + d(δ) ≥ d(α) + d(β) + |α|0|β|1, where |α|i denotes the number of occurrences of i = 0, 1 in α and d(α) denotes the number of inversions of α. Furthermore, the number of ordinary RFPLs with boundary (α, β; γ, δ) can be expressed in terms of oriented RFPLs with the same boundary. Finally, oriented RFPLs with boundary (α, β; γ, δ) such that d(γ) + d(δ) = d(α) + d(β)+ |α|0|β|1 are considered. They are in bijection with rhomboid-shaped Knutson-Tao puzzles. Also, LittlewoodRichardson tableaux of defect d are defined. They can be understood as a generalization of Littlewood-Richardson tableaux. Those tableaux are in bijection with rhomboid-shaped Knutson-Tao puzzles. Résumé. L’étude des configurations de boucles compactes dans un rhomboı̈de (”rhomboid-shaped fully packed loop configurations”, RFPLs) est inspirée des travaux de Fischer et Nadeau sur les configurations de boucles compactes dans un triangle (TFPLs). En utilisant les mêmes techniques, des résultats combinatoires sont obtenus pour les RPFLs. À chaque RPFL et à chaque RPFL orienté nous associons un quadruplet de mots binaires (α, β; γ, δ), appelé sa frontière. Il existe des conditions nécessaires pour la frontière des RPFLs, resp. des RPFLs orientés. Par exemple, la frontière (α, β; γ, δ) doit satisfaire l’inégalité d(γ) + d(δ) ≥ d(α) + d(β) + |α|0|β|1, où |α|i désigne le nombre d’occurrences de i = 0, 1 dans α et d(α) est le nombre d’inversions de α. D’autre part, le nombre de RPFLs ordinaires de frontière (α, β; γ, δ) est exprimé en termes de RPFLs orientés de même frontière. Enfin, nous considèrons des RPFLs orientés de frontière (α, β; γ, δ) tels que d(γ)+d(δ) = d(α)+d(β)+ |α|0|β|1. Ceux-ci sont en bijection avec les puzzles de Knutson-Tao sur un rhomboı̈de. De plus, nous définissons les tableaux de LittlewoodRichardson de défaut d, qui peuvent être vus comme des généralisations des tableaux de Littlewood-Richardson. Ces tableaux sont en bijection avec les puzzles de Knutson-Tao sur un rhomboı̈de.
منابع مشابه
A Conjectured Formula for Fully Packed Loop Configurations in a Triangle
We describe a new conjecture involving Fully Packed Loop counting which relates (via the Razumov–Stroganov conjecture) recent observations of Thapper to formulae in the Temperley–Lieb model of loops. PZJ was supported by EU Marie Curie Research Training Networks “ENRAGE” MRTN-CT-2004005616, “ENIGMA” MRT-CT-2004-5652, ESF program “MISGAM” and ANR program “GIMP” ANR05-BLAN-0029-01. The author wan...
متن کاملWieland Drift for Triangular Fully Packed Loop Configurations
Triangular fully packed loop configurations (TFPLs) emerged as auxiliary objects in the study of fully packed loop configurations on a square (FPLs) corresponding to link patterns with a large number of nested arches. Wieland gyration, on the other hand, was invented to show the rotational invariance of the numbers Aπ of FPLs corresponding to a given link pattern π. The focus of this article is...
متن کاملRefined Counting of Fully Packed Loop Configurations
Abstract. We give a generalisation of a conjecture by Propp on a summation formula for fully packed loop configurations. The original conjecture states that the number of configurations in which each external edge is connected to its neighbour is equal to the total number of configurations of size one less. This conjecture was later generalised by Zuber to include more types of configurations. ...
متن کاملOn the Number of Fully Packed Loop Configurations with a Fixed Associated Matching
We show that the number of fully packed loop configurations corresponding to a matching with m nested arches is polynomial in m if m is large enough, thus essentially proving two conjectures by Zuber [Electronic J. Combin. 11(1) (2004), Article #R13].
متن کاملFully packed loop models on finite geometries
A fully packed loop (FPL) model on the square lattice is the statistical ensemble of all loop configurations, where loops are drawn on the bonds of the lattice, and each loop visits every site once [4,18]. On finite geometries, loops either connect external terminals on the boundary, or form closed circuits, see for example Figure 1. In this chapter we shall be mainly concerned with FPL models ...
متن کامل